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Comparative Analysis of Fuzzy ART and ART-2A
Network Clustering Performance

Thomas Frank, Karl-Friedrich Kraiss, and Torsten Kuhlen

Abstract—Adaptive resonance theory (ART) describes a family
of self-organizing neural networks, capable of clustering arbi-
trary sequences of input patterns into stable recognition codes.
Many different types of ART-networks have been developed to
improve clustering capabilities. In this paper we compare cluster-
ing performance of different types of ART-networks: Fuzzy ART,
ART 2A with and without complement encoded input patterns,
and an Euclidean ART 2A-variation. All types are tested with
two- and high-dimensional input patterns in order to illustrate
general capabilities and characteristics in different system envi-
ronments. Based on our simulation results, Fuzzy ART seems
to be less appropriate whenever input signals are corrupted
by addititional noise, while ART 2A-type networks keep stable
in all inspected environments. Together with other examined
features, ART-architectures suited for particular applications can
be selected.

Index Terms—Adaptive resonance theory, clustering, clustering
analysis, neural networks, self-organization, sensor signals.

I. INTRODUCTION

SELF-ORGANIZED clustering is a powerful tool when-
ever huge sets of data have to be divided into separate

categories. The need for setting up such categories may arise,
e.g., from the need to set up recognition codes for complex
system-state classes, or to discover separatedclustersof data
subsets with characteristic similarities (“data mining” [10]).
In the field of neural networks, the adaptive resonance theory
(ART), introduced and developed by Carpenteret al. from
the Center for Adaptive Systems, Boston University [3], is
a popular representative for self-organized clustering. Some
outstanding features of ART, besides its clustering capabilities,
attract the attention of application engineers. Among these
are performance, economic usage of memory resources and
temporal stability of stored knowledge. Neural networks are
typically applied when standard statistical clustering methods
fail on the interpretation of a given dataset, according to
low performance or vast requirements of system resources.
However, neural networks follow internal rules, making their
applicability to a given problem predictable. The clustering
performance of ART-networks is not well documented in
the literature. It is assumed that clustering depends not only
on the network architecture and parameters, but also on
the dimensionality and nature of the clustered data. This
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paper concentrates on the comparative analysis of clustering
properties for several variants of ART-networks on two types
of input patterns. Two-dimensional pattern sets illustrate the
geometric characteristics of ART-clustering and the internal
representation of knowledge by prototypes. Sampled step
responses of second-order systems are used as an example
of high-dimensional input patterns, modeling ART properties
by clustering the shapes of time-dependent sensor signals.

II. SELF-ORGANIZED CLUSTERING WITH ART-NETWORKS

The common algorithm used for clustering in any kind of
ART network is closely related to the well-known-means
algorithm [1]. Both use single prototypes to internally repre-
sent and dynamically adapt clusters. The-means algorithm
clusters a given set of input patterns into groups. The
parameter thus specifies the coarseness of the partition. In
contrast, ART uses a minimum required similarity between
patterns that are grouped within one cluster. The resulting
number of clusters then depends on the distances (in terms
of the applied metric) between all input patterns, presented to
the network during training cycles. This similarity parameter
is calledvigilance [3]. Fig. 1 illustrates the main stages of
a simplified ART algorithm.

The first step, thepreprocessingstage, is the creation of
an input pattern as an array with a constant number of
elements. ART requires the same pattern size for all patterns,
i.e., the dimension of the input space into which all cluster
regions shall be placed. Any of the already formed prototypes
is of the same dimension . In addition, the elements of an
input pattern must fit constraints concerning, e.g., value bounds
or the geometric length of the array as vector. These constraints
are characteristics of the different types of ART networks
and are needed to make the input comparable to the cluster
prototypes. Once the input pattern is formed, it is compared
to the stored prototypes in asearch stage. If the degree
of similarity between current input pattern and best fitting
prototype1 is at least as high as vigilance, this prototype
is chosen to represent the cluster containing the input. The
degree of similarity is typically limited to the range [0,1]. If
similarity between input pattern and best fitting prototype does
not fit into the vigilance interval , a new cluster has to be
installed, where the current input is most commonly used as
the first prototype or cluster center. Otherwise, if one of the
previously committed clusters matches the input pattern well

1Upper case letters are used to mark thewinning prototype/cluster of a
comparison.
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Fig. 1. Pattern processing by an ART network, consisting of apreprocess-
ing-, search-, and adaptation-stage. The search stage will be defined more
precisely as a circuit ofchoice, match, andreset. Termination of the algorithm
is guaranteed by the initial values of prototypes.

enough, it is adapted by, e.g., slightly shifting the prototype’s
values toward the values of the input array.

Specific ART neural networks, such as ART 2 [2] or Fuzzy
ART [7], more or less extend this basic layout to show a link
between the computational characteristics of the algorithms
and the biologically motivated connectionist approach. Con-
cerning the description of the algorithms we used for ART
computer simulations in this paper, these extensions are not
our primary focus. More detailed information on particular
network designs can be found in [2], [3], [7], and [14].

The primary processing module of any ART network is a
competitive learning network, as shown in Figs. 2 and 3 [3].
The neurons of an input layer register the values of an
input pattern . Every neuron of an output
layer receives abottom-upnet activity , built from all -
outputs . The vector elements of can be
seen as results of comparisons between input patternand pro-
totypes .
These prototypes are stored in the synaptic weights of the
connections between - and -neurons. Only -neuron ,
receiving the highest net activity , sets its output to one,
while all other output neurons remain zero

if
otherwise.

(1)

Fig. 2. A competitive learning network. Input layerF1 adopts the values
of input patternI. A winner-take-alloutput layerF2 indicates the according
cluster forI, by the position of its one and only activated neuronJ .

Fig. 3. A simplified representation of the competitive learning network from
Fig. 2. All inputs and outputs ofF1 andF2 are united in one arrow for any
input or output vector. The adaptive weight-matrixWij of all connections
between layerF1 andF2 is replaced by the./-symbol.

One possibleway to compute net activities , and by that
measure the similarity betweenand , is the weighted sum

(2)

Variations on this measure are often employed because the
value exerts great influence on the resulting clusters. After
an -winner has been found, the corresponding prototype

is adapted to the input pattern. One
suitable method for adaptation is to move slightly toward
input pattern

(3)
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The constantlearning rate is chosen to prevent pro-
totype from moving too fast and therefore destabilizing
the learning process. Prototypes for this kind of competitive
learning network can be initialized either with random values
or with values of randomly chosen input patterns from the
training sequence.

Competitive learning networks of this kind tend toward
unstable categorization whenever the distances between single
input patterns vary in too wide a range [3]. Additionally, there
is no way to control either the number of clusters produced
by the network, or the minimum similarity of patterns in
one cluster. The ART solves this problem by extending the
competitive learning network as shown in Fig. 4. A second set
of connections is added, sending-output back to layer

. The synaptictop-downweights of these connections
are, besides a possible scaling factor, identical to thebottom-up
weights . Thetop-downnet activity is usually calculated
by

(4)

This leads to

(5)

because all -outputs, except , are set to zero [see (1)]. So
input layer receives prototype , representing the current
winning cluster , as net activity. Now the most complex
part of signal processing in ART networks takes place, i.e.,
matching prototype with input pattern . This task is
completed in ways characteristic to the different types of
ART networks and, as in ART 2 [2], uses extensions to the
internal structure of layer . This yields a single matching
value, that is compared with thevigilance , defining the
minimum similarity between an input pattern and the prototype
of the cluster it is associated with. If the matching value is
smaller than vigilance , the current winning -neuron is
removed from the competition by areset signal. The reset
signal forces the activation of -neuron to zero and another

-neuron is activated, receiving the highest net activityof
all nonreset output neurons. Once a prototype is found that
leads to a matching value with input pattern, at least as
high as vigilance , no further reset signal is applied and the
network attainsresonance. The position of the last winning -
neuron indicates the final cluster for input, and the associated
prototype is adapted. Fig. 1 summarizes these steps of a single
pattern processing by an ART-network. None of the output
neurons is reset at the beginning.

The initial values of prototypes that have not yet been
accessed by an input pattern, provide for two key features.

1) Previously accessed prototypes are first compared to the
input pattern before an uncommitted prototype is chosen.

2) If none of the committed clusters matches the input
pattern well enough, search will end with the recruitment
of an uncommitted prototype.

Fig. 4. Basic layout of an ART network. The competitive learning network
from Fig. 3 is extended by a second set of connections leading allF2-outputs
uj back to the input layerF1.

III. D ESCRIPTION OFART-NETWORK ARCHITECTURES

The following section describes different ART-network ar-
chitectures capable of processing analog input patterns. Prop-
erties will be discussed for Fuzzy ART [7] and ART 2A [6],
as well as for some modified ART 2A algorithms. The ART
1 algorithm [3] is not discussed, as it is exclusively designed
for binary input patterns and therefore not comparable to all
other ART variants presented in this chapter. The predecessor
of ART 2A, ART 2 [2], is neglected, because ART 2A
incorporates nearly the same clustering characteristics while
working several orders of magnitude more efficiently in com-
puter simulations [6]. Some features of the neural architectures
described in the original publications are skipped, as they are
not relevant for this analysis.

A. Fuzzy ART

Referring to Fig. 1, any ART-type net can be characterized
by its preprocessing-, choice-, match- and adaptation-rule,
wherechoiceandmatchdefine the search circuit for a fitting
prototype. With Fuzzy ART [7], these rules are as follows.

• Preprocessing
All values of an input pattern must fit into the interval

(6)

• Choice
Bottom-up net activities, leading to a preliminary choice
of a prototype, are determined using the fuzzy conjunction

, which is defined by

A single net activity can be seen as the degree of
prototype , being afuzzy subsetof input pattern [14]

(7)
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where is fuzzy subset of , if . The size
of a vector is determined by its -norm, the sum
of its components. Thechoice parameter [7] provides
a floating point overflow, if . In [9] some
additional properties of Fuzzy ART with variations on
are pointed out, such as, e.g., lowest possible vector size
of prototypes. Simulations in this paper are performed
with a value of .

• Match
The similarity of input and current winning prototype

is measured by the degree ofbeing a fuzzy subset
of . Resonance and adaptation occurs, if

(8)

• Adaptation
The winning prototype is adapted by moving its
values toward the common MIN vector ofand

(9)

The learning rate defines how quickly prototypes
converge to the common minimum of all input patterns as-
signed to the same cluster. With the network is working
in a fast learningmode [7], stabilizing the network state after
a few presentations of all training patterns. In contrast, lower
learning rates lead to aslow learningmode. ART-networks
can simply be run in a pureclassification modeby setting
the learning rate of a previously trained network to zero,
which prevents all prototypes from being modified by new
input patterns. Uncommitted prototypes are initialized with a
constant value

(10)

This ensures that search will end if a previously uncommitted
prototype is top-down compared with inputby (8), since

then. The higher the initial value for
chosen, the lower the bottom-up net activityresulting from
an uncommitted prototype (7). By that, initial values
guarantee thatall committed prototypes are compared with the
input, before an uncommitted cluster is chosen as winner.

A useful method to accelerate learning in ART networks
is to set the learning rate whenever a previously
uncommitted cluster is adapted to the current input vector.
Then input is identically copied as the first prototype of
a new cluster if no other stored prototype matches the input
well enough. Committed prototypes might then be adapted
more slowly , to preserve them from being corrupted
by noisy input patterns. This method is calledfast-commit
slow-recode[7] and is used for all simulations of Fuzzy ART
networks in this paper.

1) Complement Coding:Carpenter and Grossberg mention
a problem of cluster proliferation that can occur with Fuzzy
ART [7]. Because vector elements of prototypes can only
become smaller by adaptation, a fuzzy ART network tends to
create more and more prototypes over time that match input
patterns with higher values, while prototypes with very low
values might never be accessed further on. This behavior is

avoided by normalizing inputs to a constant vector length [7],
[9]. One possible method is to use an Euclidean normalization
to convert an input pattern into a coded input

The main disadvantage of this method is the complete loss
of any information stored in the vector length of an input
pattern. Therefore, a modified normalization variant called
complement codingis typically used to set all input patterns to
a common vector length [4], [7], [9]. An original vector

is coded into an input pattern by
adding the complements of its elements to the original vector.
This doubles the dimension of all input patterns and prototypes

(11)

The -norm2 of complement encoded vectors of the same
dimension is constant, independent of the values of their
elements

(12)

Using complement coding, (8) reduces to

(13)

Uncommitted prototypes are still initialized according to (10).
Working in fast learning mode , a prototype in
Fuzzy ART represents the common MIN-vector of allinput
patterns , with , assigned to the same cluster,
in at least one presentation

(14)

Using complement coding, input patterns
lead to prototypes representing the common MIN-and MAX-
vectors of all uncoded patterns

(15)

With lower learning rates, network prototypes converge more
slowly to these MIN- and MAX-bounds.

2TheLr-norm is defined byjXj(r) = m

i=1 x
r

i
.
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Fig. 5. Similarity in ART 2A is measured by angle' between input
vector I and prototypeWJ. Input I is assigned to clusterJ if cos'

� cos� = vigilance�.

B. ART 2A

This section discusses another popular ART algorithm,
called ART 2A [6]. In contrast to Fuzzy ART, ART 2A
uses the angle between prototype vectors and input pattern
to find a fitting cluster. Fig. 5 illustrates the relationships for
two-dimensional input patterns.

The central functions of the ART 2A-algorithm, according
to Fig. 1, are as follows.

• Preprocessing
No negative input values are allowed and all uncoded
input vectors are normalized to unit Euclidean length,
denoted by function symbol

(16)

Carpenter and Grossberg suggest an additional method
of noise suppression to contrast enhance characteristic
pattern features by setting all input values to zero, which
do not exceed a certain bias[2]

(17)

if
otherwise

(18)

This kind of contrast enhancement does only make sense
if characteristic features of input patterns, leading to a
distribution on different clusters, are codedexclusivelyin
their highest values. With bounded by

(19)

the upper limit will lead to complete suppression of all
patterns having the same constant value for all elements.

• Choice
Bottom-up net activities, leading to the choice of a
prototype, are determined by

if indexes a
committed
prototype
otherwise

(20)

(21)

Bottom-up net activities are determined differently for
previously committed and uncommitted prototypes. The
choice parameter again defines the maximum depth
of search for a fitting cluster. With , all committed
prototypes are checked before an uncommitted prototype
is chosen as winner. The simulations in this paper apply

.
• Match

Resonance and adaptation occurs either ifis the index
of an uncommittedprototype or if is a committed
prototype and

(22)

• Adaptation
Adaptation of the final winning prototype requires a shift
toward the current input pattern

(23)

ART 2A-type networks always usefast-commit slow-
recodemode. Therefore the learning rate is set to
if is an uncommitted prototype and to lower values for
further adaptation. If contrast enhancement is used, (22)
is modified to

if
otherwise.

(24)

Since match and choice do not evaluate the values of un-
committed prototypes, there is no need to initialize them with
specific values. ART 2A-related networks should not be used
in fast-learning mode with , because prototypes then
begin to “jump” between all patterns assigned to their cluster,
instead of converging toward their mean.

C. ART 2A-C: Complement Encoding with ART 2A

The main disadvantage of ART 2A for many implemen-
tations is the loss of all information coded in the length of
an input pattern, because all patterns are normalized to unit
Euclidean length. In other words, ART 2A cannot distinguish
between two uncoded inputs and , where ,
with . Using complement encoding, as described in
Section III-A1, all information stored in the length of an
uncoded vector is coded into the direction of the resulting
vector . Whitely et al. used this method to extend



FRANK et al.: COMPARATIVE ANALYSIS OF FUZZY ART AND ART-2A 549

the recognition capabilities of ART 2A in processing analog
sensor signals [12]. One way to include complement coding
into the ART 2A algorithm, is to use it as an additional
preprocessing step before entering the algorithm. Unfortu-
nately, prototypes are normalized to unit length and adapted to
normalized input patterns, when doing so. To keep a geometric
interpretation of prototypes as a measure of alluncodedinput
patterns assigned to their cluster, normalization is moved from
preprocessingand adaptation to the choice/matchfunction.
The complete algorithm is as follows.

• Preprocessing

(25)

• Choice

if indexes a
committed
prototype
otherwise

(26)

(27)

• Match
As with ART 2A, resonance and adaptation occurs either
if indexes anuncommittedprototype or if is already
committedand

(28)

• Adaptation

(29)

In contrast to Fuzzy ART using complement encoding, ART
2A-C prototypes remain a complement encoded pattern, even
when adapted to several different input patterns. This is shown
for two one-dimensional complement coded input patterns

and . Following (29), a
vector is also a complement coded
one-dimensional pattern

with

and

Hence ART 2A-C prototypes represent a complement coded
mean-vector of all input patterns assigned to the individual
clusters.

D. ART 2A-E: Euclidean Distances in ART 2A

Another way to preserve vector-length information in ART
2A pattern processing, is to replace the ART 2A-distance
metric with a Euclidean measurement of similarity and skip
the length normalization of inputs in the preprocessing and
adaptation stage. A comparable approach is done in [11]. The
Euclidean algorithm used in this section, differs in some ways
from [11] to keep it closer to the ART principles.

• Preprocessing
All elements of an input vector should fit to the interval

(30)

• Choice
Bottom-up net activities are determined using the Eu-
clidean distance, normalized with the dimension of
an input vector. This keeps measurements of similarity
independent from the number of vector elements. The
distance is subtracted from one to get , if input
vector and prototype are identical

(31)

Uncommitted prototypes should be initialized with values
to achieve a sufficiently deep search for a fitting

committed prototype.
• Match

The match function remains as in (28).
• Adaptation

(32)

Table I summarizes the ART-algorithms discussed. Choice-
and match-functions of ART 2A-type networks are listed only
for committed prototypes/clusters. All ART 2A-type network
simulations are done infast-commit slow-recodemode, setting

when adapting a previously uncommitted prototype and
, else.

IV. COMPARATIVE ANALYSIS OF CLUSTERING PERFORMANCE

This section presents clustering examples for all ART-
architectures discussed in the previous section. Two types
of pattern sets, both consisting of 100 different patterns, are
used to analyze and compare clustering performances. Patterns
are presented in different random orders. A training sequence
with a particular network and pattern set is stopped after
each pattern has been presented aminimumnumber of times.
Therefore not all patterns are necessarily presented the same
number of times. This strategy takes into account that in
many inspected environments neither the frequency nor the
order of particular system states is predictable. Unless it is
explicitly mentioned, simulations with different network types
or network parameters are performed with the same random
but constant order of patterns to keep the results comparable.
When a training sequence is completed, the final distribution
of the complete pattern set into clusters is tested with a
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TABLE I
SUMMARY OF THE ART-ALGORITHMS USED FORSIMULATIONS IN THIS PAPER

single presentation of each individual pattern in the set, while
learning rate is set to zero (classification mode).

A. Clustering Performance for Two-Dimensional Data

The first inspected pattern set consists of 100 two-
dimensional patterns, representing uniformly distributed points
in a unit square. Pattern values are taken from the interval

to fit the input restrictions of any described ART-
network type. The spatial distribution of the data points does
not support an obvious distinction of clusters. So the clustering
performance in different simulations demonstrates clearly the
different geometric interpretations of the pattern space and the
according prototype representations. Fuzzy ART and the ART
2A-type networks are discussed separately, because of their
characteristic differences.

1) Two-Dimensional Clustering with Fuzzy ART:In the
special case of area points as two-dimensional input patterns,
(15) defines four-dimensional Fuzzy ART-prototypes as rect-
angles, with the first two elements representing the lower left
corner, and the last two elements representingthe complements
of the upper right coordinates. A stable network state is
reached, when all uncoded training patterns are
enclosed by at least one of these prototype rectangles. If a
complement coded input pattern
defines a point inside a prototype rectangle, (9) will lead to
no further network modifications, since then.
According to (13), resonance and adaptation of occurs, if

(33)

Hence the vigilance parameterdefines a maximum extension
of a single rectangle [7], with a lower bound for the-norm
of any committed Fuzzy ART-prototype

(34)

The upper limit results from (12) and defines the initial
extension of a prototype after its first adaptation. With learning
rate , the adaptation of a prototype toward an input
pattern not yet lying within its area, stretches the according
rectangle to the minimum area, covering all patterns assigned
to the same cluster for at least one time. With a stable
network state is reached, as soon as all training patterns have
been presented just one time (one-shot learning[7]). Fig. 6(a)
shows an example for one-shot learning of the complete 2-D
pattern set. The patterns were presented in a random order,
until any pattern was processed by the network at least once.
Cluster 5 is divided into two separate areas, 5a and 5b, because
its prototype rectangle is partially covered by that of cluster 2.

Bottom-up net activities are set to their maximum value
, whenever an input pattern defines a point inside a

prototype rectangle [see (7)]. If this point is inside more than
one rectangle, the prototype withlowest index jis chosen as
winner3. The prototypes of the network, used in Fig. 6(a), are

With lower learning rates in slow-learning mode, pro-
totype rectangles do not tend to overlap that often. While
rectangles cover the input space more efficiently up to their
maximum size, the overall number of stored prototypes is

3The winning index might also be chosen at random, if more than one
prototype leads to a maximum bottom up net activity.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Two-dimensional clustering performance for Fuzzy ART-networks. Circles mark the spatial positions of uncoded input patterns. Prototypes are printed
as rectangles. Patterns assigned to a common cluster are marked with an underlying gray shade. Cluster 5 in (a) is split in two separate areas (5a and 5b).
The experiments illustrated in (e) and (f) differ in their random pattern-presentation order.

reduced. Fig. 6(b) shows clusters from a network with the
same vigilance, but lower learning rate than in Fig. 6(a), after
adaptation to the same random training sequence. Because
training stopped when each pattern was presented at least one
time, prototype rectangles do not cover all patterns, assigned
to the cluster they represent. Fig. 6(c) shows clusters when
pattern presentation is continued until each pattern is processed
at least ten times. Prototypes now reached their stable values,
indicated by the fact, that all training patterns are covered by
prototype rectangles.

With learning rates , the number of clusters, as well as
the distribution of patterns to clusters, might vary throughout
pattern presentation, as long as prototypes have not yet reached
their stable equilibrium. Fig. 6(d) and 6(e) shows intermediate
states of the same network after each pattern of the training
sequence has been presented at least one and at least ten times.
The number of clusters increases from six to eight. Higher
vigilances limit the maximum area in pattern space covered by
a single prototype rectangle and increase the total number of
clusters on a static pattern set. Fig. 6(f) uses the same values
for parameters and as Fig. 6(e). Each pattern is again
presented at least ten times, but in a different random order.
The example demonstrates, that even lower vigilances do not
necessarily prevent cluster rectangles from overlapping. The

number of resulting clusters depends not only on vigilance
parameter but also on the order of pattern presentation.

2) Two-Dimensional Clustering with ART 2A-Type Net-
works: ART 2A prototypes are continually modified as long
as the network is presented with input patterns. The prototypes
thus never reach stable equilibria. An appropriate time to stop
training is reached, when all patterns are assigned to the same
clusters over two or more presentations. In most cases this state
is reached after few training cycles, independent of the nature
and size of the input patterns [12]. With the two-dimensional
input patterns used in this section, stability in this sense is
always reached with a combination of learning rate
and a minimum of ten presentations per pattern. The geometric
interpretation of ART 2A-type prototypes is a mean-vector of
all patterns assigned to the according clusters. Variations
on influence the number of presentations necessary to
lead prototypes to this mean point. A rule-of-thumb is to
choose as high as possible, to still achieve stability in the
above mentioned sense, with the lowest necessary number
of presentations per pattern. As mentioned before, a Fuzzy
ART-like one-shot-learning with cannot be performed
with ART 2A-type networks, since clustering will not stabilize
when a prototype is always set to the values of the last input
pattern assigned to the cluster it represents. Fig. 8 illustrates



552 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998

Fig. 7. Cluster borders in ART 2A-E are defined by the centerlines (thick
lines) between prototype positions (crosses). Here illustrated for the clustering
example of Fig. 8(g).

clustering results of ART 2A and the modified algorithms ART
2A-C and ART 2A-E. The networks were trained with two
different values for vigilance parameterand two different
random pattern sequences (A and B). Both sequences stopped
after each pattern was presented at least ten times. Vigilances
were chosen with no other prediction but a number of three or
four for the lower and five or six clusters for the higher value,
when training with pattern sequence A. Prototype positions
are marked with crosses. Even though ART 2A-C stores four-
dimensional prototype vectors, the interpretation remains a
two-dimensional complement encoded point in pattern space
(see Section III-C). For example with Fig. 8(d), prototype
values of ART 2A-C are

The first thing to remark, when looking at Fig. 8, is the
way pattern space is separated into clusters by the different
network-types. Since ART 2A normalizes all prototypes and
uncoded input patterns to unit Euclidean length (17), a pattern

appears the same to the network as a pattern
. As a consequence, clusters separate the

two-dimensional pattern space along radials [Fig. 8(a)–8(c)].
Vigilance defines a maximum angle between input and
prototype vector of for and
for (see Fig. 5).

ART 2A-C and ART 2A-E behave in a very similar fashion
in separating pattern space into clusters, even if ART 2A-C
compares the angle between a complement coded input pattern

and a prototype, while ART 2A-E measures a Euclidean
distance between input pattern and prototype. This emphasizes
the fact that complement coding stores length information of
an uncoded pattern in the direction of a coded pattern. With
two-dimensional input patterns, the choice/match function (31)
of ART 2A-E defines a circle around any stored prototype,
with radius

(35)

With Fig. 8(g)–8(i) the radii are for
and for . An input pattern is assigned
to the cluster with the smallest Euclidean distance to its
prototype and the pattern lying inside the according circle area.
Otherwise, the input pattern is lying outside any of the already
existing cluster circles, a new cluster with a new prototype is
set up. Cluster borders within more than one circle area are
defined by the centerline between the neighboring prototypes
(Fig. 7).

Some properties are common for all ART 2A-type networks.
Higher vigilances increase the number of clusters, set up on
the same pattern sequence. The number of clusters can vary
with the order of pattern presentation, as can be seen in the
middle and right column of Fig. 8. In contrast to Fuzzy ART,
clusters are alwayscoherentin pattern space and never split
in two separate areas as with Fig. 6(a).

B. Clustering Performance for Higher Dimensional Data

In Section IV-A ART-clustering with different network vari-
ants was illustrated on two-dimensional input patterns. Appli-
cations using clustering algorithms on various sources of input
data usually deal with input patterns of higher dimensions. One
typical scenario is the clustering of analog sensor data. Here,
the task is to discover the structure of technical or biological
system states as, e.g., in [8] or [12], by analyzing the shapes of
specific time dependent sensor signals. Input patterns in these
cases do not cover the whole multidimensional input space,
but tend to form groups in geometrically separated areas.
ART-networks are used to either discover stable categories of
patterns with a minimum required similarity [8], or to set up
recognition maps of an input space, by supervised assignment
of ART clusters to pattern classes, with variants of ARTMAPS
[4], [5], [12], [13]. In such applications the results of clustering
should not, or at most very slightly, depend on the random
order in pattern presentation. In addition, the network output
should be fairly independent of additional noise, since input
patterns built from sensor signals will always vary, even when
representing exactly the same system state.

Clustering capabilities of ART networks are examined,
using step responses of second-order systems (Fig. 9) as
an example for a more general sensor signal shape. The
response function is normalized so that the resulting oscillation
converges around a value of

(36)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Comparison of two-dimensional clustering performance for ART 2A-type networks. Circles mark the spatial positions of input patterns; crosses
mark the positions of prototypes. Patterns assigned to a common cluster are marked with an underlying gray shade. The common learning rate used for all
simulations is� = 0:1, with a minimum of ten presentations per input pattern in a random sequence.

Input vectors are formed out of 100 consecutive values of
with . A useful property of the step response is the
fact that it is completely defined by two physical parameters,
eigenfrequency and damping . Therefore, input
patterns as shown in Fig. 9, as well as clusters, can be depicted
in a two-dimensionalPT2-parameter planeto illustrate the
influence of different network-parameter variations. The period

length of the step response in terms of inverse eigenfrequency
is varied from ten to 100 time intervals in steps of ten.
The damping is varied from to at ten
equidistant intervals on a logarithmic scale. Step responses
of the training-pattern set are equally distributed over this
physical parameter plane, but represent points in discrete
subareas of a 100-dimensional pattern space. So in contrast
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Fig. 9. Step responses of second-order systems (PT2) with different eigenfrequencies and dampings. Input patterns consist of 100 samples, taken at
equidistant times.

Fig. 10. PT2 step response with period length1=f0 = 40 and damping� = 0:13. The original signal (dotted line) is corrupted by a random white
noise with maximum amplitude 0.25.

to the two-dimensional pattern set of the previous sections,
there are geometrical preferences for clustering, which should
be discovered independently of the random order in pattern
presentation. Since exclusively damping and eigenfrequency
determine the shape of the trained step responses, networks
are expected to set up clusters, including shapes referenced
by neighboring points in the parameter plane. The training set
is presented in random orders, as with the two-dimensional
pattern set (see introduction of Section IV).

Generalization capabilities of ART-networks are tested by
classifying the pattern set with previously trained networks and
learning rate , after any pattern has been corrupted with
a random white noise (see Fig. 10). The more noisy patterns
are assigned to the clusters of their undisturbed origins, the
higher is the quality of generalization.

3) Higher Dimensional Clustering with Fuzzy ART:Fig. 11
shows clustering examples of step responses with Fuzzy ART
in one-shot-learning mode, learning rate , and slow-
learning mode, . The random pattern sequences
were presented with a minimum of one presentation per
pattern with , and 200 presentations per pattern with

. Fig. 11(a) shows an example of one-shot learning
with vigilance set to . The network set up seven
clusters on the pattern set. Besides cluster 1, patterns from all
other clusters are distributed over up to five separate coherent
areas (gray shades) on the parameter plane, as shown for
cluster 4. The cluster numbers represent the temporal order
during training in which prototypes were accessed for the
first time. Clusters in Fig. 11(b) are set up with the same
network-parameters but a different random order in pattern
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(a) (b) (c)

(d) (e) (f)

Fig. 11. High-dimensional clustering performance of Fuzzy ART networks. Step responses of second-order systems are defined by their eigenfrequency
f0 and damping�, marked with circles on the parameter plane. Gray shades group neighboring patterns in the parameter plane, assigned to the same
cluster. Single Fuzzy ART clustersare often represented by more than one coherent area on the parameter plane. Experiments in (a) and (b) differ in
the random order of input pattern presentation.

presentation. The scene is again dominated by a huge cluster
1 and four additional clusters, dividing the PT2-parameter
plane in distinctly different clusters. Only cluster 1 and 5
are coherent, while clusters 2, 3, and 4 are split in up to
three seperate areas. Even in slow-learning mode, with at
least 200 presentations per pattern, Fuzzy-ART clustering
remains incoherent in the physical parameter-plane and highly
dependent on the order of pattern presentation. In Fig. 11(d)
seven clusters were set up, showing the same characteristics
as with (a) and (b) in one-shot learning mode. Clustering
tends to become more stable and coherent, when using higher
vigilances as in Fig. 11(d), where only cluster 12 is defining
two separate coherent areas on the plane. Fig. 11(c) and
11(f) demonstrate the assignment of noisy input patterns to
the clusters of Fig. 11(b) and 11(e). All input patterns were
corrupted with a random white noise of maximum amplitude
0.1, which is 2.5 times smaller than with Fig. 10. Most
of the noisy patterns are assigned to different clusters than
their undisturbed trained origins. Some patterns are even not
assigned to a cluster at all, as to be seen in Fig. 11(f) with
all points/parameter-pairs not included by a gray shade. If we
assume that input patterns still represent the same physical
state of the underlying second-order system, the recognition

capabilities of Fuzzy ART in real-world environments are
rather discouraging.

Properties of Fuzzy ART depend on the state of its pro-
totypes. Fig. 12 shows examples of prototypes, according to
the network of Fig. 11(b) and 11(c). Once prototype areas
have reached their stable equilibrium on the training pattern
set, the MIN- and MAX-components of any Fuzzy ART
prototype [see (15)] define the borders of an area, covering
all patterns assigned to the associated clusters. The maximum
area is again defined by (34). With and uncoded
patterns, consisting of 100 elements, the limits for prototypes
are set to . With Fig. 12 the -norms
are: , and .
Cluster 5 refers to the last installed prototype during training,
adapted to only one input pattern [ and
in Fig. 11(b)]. Once the -norm of a prototype reaches the
lower limit, no pattern is assigned to its cluster, with even one
element lying outside the MIN-/MAX-borders. This is why
cluster 1 in Fig. 11(c) was accessed by none of the noisy input
patterns, while cluster 5 attracts that many patterns. With a
noise-amplitude of 0.25 instead of 0.1, as shown in Fig. 11(c),
all noisy patterns are assigned to cluster 5. As a summary,
Fuzzy ART recognition properties are highly sensitive to noise,
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Fig. 12. Fuzzy ART-prototypesW1,W2, undW5, according to Fig. 11(b) and (c). The MIN- and MAX-components of the first and second half of a
prototype are drawn seperately, defining a hatched area, covering all input patterns assigned to the according cluster.

making its output unpredictable and indefinite, when input
patterns in classification mode differ even slightly
from the trained patterns.

Some of the Fuzzy ART properties may change, when the
training of a network is terminated before prototype rectangles
have reached their stable equilibrium. This method would
generally exclude theone-shot learningmode, where prototype
areas will usually reach their maximum size after a single
presentation of a complete patterns set. In addition, Fuzzy ART
loses its very useful property of indicating the completion of
a training cycle through stability of prototypes. The question
then arises, how to appoint an appropriate time to stop training.

4) Higher-Dimensional Clustering with Art 2A-Type Net-
works: Fig. 13 shows clustering examples of the PT2-step
responses for ART 2A and the Euclidean ART 2A-E. All
ART 2A-type networks, ART 2A with and without comple-
ment encoded input patterns and ART 2A-E, behave very
similarly in clustering PT2 step responses, in spite of the
different distance metrics. ART 2A-C and ART 2A-E al-
ready showed similarities when clustering two-dimensional

data (see Fig. 8). Since the Euclidean length of input vectors
does not vary in too wide a range, the relative shape of
patterns within the training set remains nearly the same, even
when normalized to unit Euclidean length. So all ART 2A-
type networks detect the same similarities and differences
of the presented step responses. Networks were trained with
a constant learning-rate of and a minimum of 20
presentations per pattern. These values turned out to deliver
prototypes close to the means of the assigned input patterns,
and led to stable distribution of patterns to the same clusters
over several training cycles. Fig. 14 shows prototypes of
ART 2A and ART 2A-E, according to Fig. 13(b) and (e).
The differences in the quality of the shapes between both
network types are minimal. ART 2A-C prototypes approximate
those of ART 2A-E, in as far as they have the same adap-
tation rules. ART 2A-C prototypes consist of 200 elements.
The last 100 elements define the complement of the first
(see Section III-C).

Clusters of ART 2A-type networks are always coherent in
the physical parameter plane, just as they are in pattern space.



FRANK et al.: COMPARATIVE ANALYSIS OF FUZZY ART AND ART-2A 557

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. High-dimensional clustering performance of ART 2A-type networks. All physical parameter-pairs grouped by a gray shade represent a complete
cluster of 100-dimensional PT2-step responses. The simulations were done with a learning rate of� = 0:1 and a minimum of 20 presentations per
pattern in two different random sequencesA and B. Noisy patterns were classified with� = 0 and the trained networks from the middle column
of figures. Noise amplitude is set to 0.25.

So ART 2A-clusters do not only reflect geometrical neighbor-
hoods but also similarities in physical signal parameters of
the second-order systems. Up to a limit of damping
the eigenfrequency of the input patterns is the main criterion
on which patterns are distinguished. Above that damping
limit, clustering becomes more indefinite, with a tendency
to a constant relation . Vigilances were chosen with

respect to the number of clusters created by a network. The
comparison of Fig. 13(a) and (d) and Fig. 13(b) and (e), shows
the similarity in the shapes of clusters on the parameter plane
for ART 2A and ART 2A-E. The same shapes turn out when
clustering the pattern set with ART 2A-C and an appropriately
chosen vigilance. Comparing the left and middle column in
Fig. 13, clustering turns out to be rather independent of the



558 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998

Fig. 14. Prototype representations, referring to the ART 2A clusters of Fig. 13(b) and the ART 2A-E clusters of Fig. 13(e).

random order in pattern presentation, especially for lower
vigilances and higher cluster sizes.

Generalization and recognition properties are illustrated
with a noise corrupted pattern set, classified by the trained
networks from the middle column of Fig. 13. Noise amplitude
is set to 0.25 (see Fig. 10). Patterns not assigned to the same
clusters as their undisturbed trained origin, are rather assigned
to no cluster at all than assigned to thewrongcluster (right col-
umn of Fig. 13). The disturbing influence of additional noise
on the assignment of patterns to existing clusters increases,
together with vigilance parameter [Fig. 13(i)]. Up to noise
amplitudes of about 0.15, pattern distribution did almost not
vary from that of the undisturbed patterns. That means, that
for many applications ART 2A-like network variants can be
treated as rather insensitive against small variations on input
patterns, representing the same state of the inspected system.

V. CONCLUSION

Leaving aside the biologically motivated aspects, ART
turns out to be an effective, transparent clustering algorithm.
Two different types of ART-networks, Fuzzy ART and ART
2A, as well as two ART 2A-modifications, ART 2A-C and
ART 2A-E, were inspected. Each variant is characterized
by its preprocessing-, choice-, match- and adaptation-rule
(see Table I). Two-dimensional pattern sets illustrated the
geometric nature of ART-clusters. Fuzzy ART uses the degree
of an input pattern being fuzzy subset of a stored prototype to
measure the similarity between two patterns. When using com-
plement encoded input patterns, prototypes converge toward

the common MIN- and MAX-values of all patterns assigned to
the according cluster. Clusters separate the pattern space along
the pattern space axes. In contrast ART 2A measures the cosine
of the angle between input- and prototype-vector, separating
pattern space along radials. Using complement encoding with
ART 2A (ART 2A-C), length and orientation of an uncoded
input vector is stored as a higher dimensional coded pattern.
The result is a distance metric comparable to the Euclidean
metric of ART 2A-E. Properties of ART-networks depend
on two main parameters, and . Vigilance defines the
minimum similarity between patterns in one cluster in terms
of the applied distance metric. Higher vigilances increase the
total number of clusters set up on a static pattern set. If no
geometric preferences are given for a specific pattern set, as
with the two-dimensional patterns in this paper, the number
of clusters is also slightly dependent on the order of pattern
presentation. Learning rate regulates adaptation of stored
prototypes toward input patterns.

Fuzzy ART networks reach a state of temporally stable
prototypes, indicating the end of a training cycle on a fixed set
of patterns. All network weights are fixed, when all training
patterns are enclosed by the MIN- and MAX-bounds defined
by the prototypes. The extension of prototypes is limited by
the vigilance parameter. Once the maximum extension of a
prototype has been reached, no further patterns are assigned
to the according cluster not lying completely within the MIN-
and MAX-borders. This makes Fuzzy ART highly sensitive
to additional noise on trained input patterns and its output
unpredictable. Even if the geometric distribution of input
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patterns in pattern space gives preferences for the distribution
of these patterns to clusters, Fuzzy ART clusters remain highly
dependent on the random order of pattern presentation and tend
to be incoherent in pattern space. The example of sampled
PT2-step responses in this paper illustrated that Fuzzy ART-
clusters can even be incoherent in the physical parameter
space.

For most applications, where pure self-organized clustering
of a pattern set is required, ART 2A is the more appropriate
solution. If there are geometric preferences within a given pat-
tern set, ART 2A-type networks discover them, independently
from the random order of pattern presentation. ART 2A-type
clusters are always coherent in pattern space, and in addition
are also always coherent in the parameter plane of second-
order systems. Even if there is nostable network state as
with Fuzzy ART, after a few presentations of a pattern set a
network state is reached, where single patterns will not change
their clusters anymore, and prototypes represent a means of
all accorded input patterns. Decisions on which kind of ART
2A-type network should be chosen for a particular application
depend on the computational requirements of the algorithms
on specific platforms. If all inspected system information is
stored in the direction of input vectors, pure ART 2A is a fast
alternative; otherwise one of its variations should be chosen.
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